Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2143397

RESUMO

Six new polyoxygenated terpenoids, podovirosanes A-F (1-6), and two known polyketides (7 and 8) were isolated from the roots of F. virosa. Their structures, along with absolute configurations, were deduced using spectroscopic analysis as well as computational calculations, including TDDFT calculation of ECD spectra and GIAO NMR calculations combined with DP4+ probability analysis. Compounds 2, 3, 5, and 8 were found to reduce the phosphorylation levels of NF-κB p65 in SARS-CoV-2 pseudovirus-stimulated PMA-differentiated THP-1 cells.


Assuntos
COVID-19 , Euphorbiaceae , Policetídeos , Terpenos/farmacologia , Terpenos/química , Euphorbiaceae/química , SARS-CoV-2 , Policetídeos/farmacologia , Estrutura Molecular
2.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2081847

RESUMO

Griseofulvin is an antifungal polyketide metabolite produced mainly by ascomycetes. Since it was commercially introduced in 1959, griseofulvin has been used in treating dermatophyte infections. This fungistatic has gained increasing interest for multifunctional applications in the last decades due to its potential to disrupt mitosis and cell division in human cancer cells and arrest hepatitis C virus replication. In addition to these inhibitory effects, we and others found griseofulvin may enhance ACE2 function, contribute to vascular vasodilation, and improve capillary blood flow. Furthermore, molecular docking analysis revealed that griseofulvin and its derivatives have good binding potential with SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), and spike protein receptor-binding domain (RBD), suggesting its inhibitory effects on SARS-CoV-2 entry and viral replication. These findings imply the repurposing potentials of the FDA-approved drug griseofulvin in designing and developing novel therapeutic interventions. In this review, we have summarized the available information from its discovery to recent progress in this growing field. Additionally, explored is the possible mechanism leading to rare hepatitis induced by griseofulvin. We found that griseofulvin and its metabolites, including 6-desmethylgriseofulvin (6-DMG) and 4- desmethylgriseofulvin (4-DMG), have favorable interactions with cytokeratin intermediate filament proteins (K8 and K18), ranging from -3.34 to -5.61 kcal mol-1. Therefore, they could be responsible for liver injury and Mallory body (MB) formation in hepatocytes of human, mouse, and rat treated with griseofulvin. Moreover, the stronger binding of griseofulvin to K18 in rodents than in human may explain the observed difference in the severity of hepatitis between rodents and human.


Assuntos
COVID-19 , Policetídeos , Camundongos , Humanos , Ratos , Animais , Griseofulvina/farmacologia , Antifúngicos/farmacologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus , Queratinas/metabolismo , RNA Polimerase Dependente de RNA
3.
J Antibiot (Tokyo) ; 75(10): 535-541, 2022 10.
Artigo em Inglês | MEDLINE | ID: covidwho-2050352

RESUMO

In the course of our screening program for new anti-methicillin-resistant Staphylococcus aureus antibiotics, four novel antibiotics, termed wychimicins A-D, were isolated from the culture broth of the rare actinomycete Actinocrispum wychmicini strain MI503-AF4. Wychimicins are spirotetronates possessing a macrocyclic 13-membered ring containing trans-decalin and ß-D-xylo-hexopyranose moieties connected to C-17 by an O-glycosidic linkage according to MS, NMR and X-ray analyses. In X-ray crystal structure analysis, the Flack constant was 0.10 (11). The stereochemistry of the spirocarbon C-25 was R. Wychimicins had a minimum inhibitory concentration of 0.125-2 µg ml-1 against methicillin-resistant Staphylococcus aureus.


Assuntos
Actinobacteria , Actinomycetales , Staphylococcus aureus Resistente à Meticilina , Policetídeos , Antibacterianos/química , Testes de Sensibilidade Microbiana
4.
Org Lett ; 24(3): 804-808, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1632912

RESUMO

A chemical investigation of the filamentous fungus Aspergillus californicus led to the isolation of a polyketide-nonribosomal peptide hybrid, calipyridone A (1). A putative biosynthetic gene cluster cpd for production of 1 was next identified by genome mining. The role of the cpd cluster in the production of 1 was confirmed by multiple gene deletion experiments in the host strain as well as by heterologous expression of the hybrid gene cpdA inAspergillus oryzae. Moreover, chemical analyses of the mutant strains allowed the biosynthesis of 1 to be elucidated. The results indicate that the generation of the 2-pyridone moiety of 1 via nucleophilic attack of the iminol nitrogen to the carbonyl carbon is different from the biosynthesis of other fungal 2-pyridone products through P450-catalyzed tetramic acid ring expansions. In addition, two biogenetic intermediates, calipyridones B and C, showed modest inhibition effects on the plaque-forming ability of SARS-CoV-2.


Assuntos
Aspergillus/metabolismo , Piridonas/metabolismo , Aspergillus oryzae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Deleção de Genes , Humanos , Família Multigênica/genética , Policetídeos/metabolismo , Policetídeos/farmacologia , Piridonas/farmacologia , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
5.
Curr Mol Pharmacol ; 15(2): 265-291, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1145509

RESUMO

The emergence of communicable and non-communicable diseases has posed a health challenge for millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of the recent pandemic, SARS-CoV-2, caused by lethal severe acute respiratory syndrome coronavirus 2, is one such example. Rapid research and development of drugs for the treatment and management of these diseases have become an incredibly challenging task for the pharmaceutical industry. Although, substantial attention has been paid to the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has made a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of the latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining natural and synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial for future bioprospecting and drug discovery.


Assuntos
Tratamento Farmacológico da COVID-19 , Policetídeos , Desenvolvimento de Medicamentos , Humanos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Policetídeos/química , Policetídeos/metabolismo , Policetídeos/farmacologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA